Improving the Global Competency of Graduate Engineers Through Peace Corps Partnership and Long-Term International Service

Mr. Nathan Daniel Manser, University of South Florida

Nathan Manser is an Environmental Engineering PhD candidate at the University of South Florida conducting research on the fate of pathogens in biological waste to energy systems. His research interests include the application of household engineered systems to recover resources in a low impact environment, developing globally competent engineering graduates and integrating active learning methods into engineering curriculums.

Ms. Colleen Claire Naughton, University of South Florida

Colleen Naughton is a doctoral student at the University of South Florida in the Department of Civil and Environmental Engineering. She is advised by Dr. James R. Mihelcic. Colleen is also part of the Peace Corps Master’s International Program where she served and conducted research in Mali, West Africa for three years as a Water and Sanitation Extension Agent. Her research was focused on “Monitoring and Evaluation of an Appropriate Handwashing Technology.” Colleen’s dissertation research involves a human and embodied material energy analysis of the Shea Butter process; mapping the Shea Butter belt using Geographic Information Systems (GIS) to estimate the area and population that work with and consume Shea butter; and quantifying emissions of carbon black from the smoking and boiling of shea nuts.

Matthew E Verbyla

Matthew Verbyla is a Ph.D. candidate and National Science Foundation Graduate Research Fellow at the University of South Florida, where he studies pathogen removal and microbial risk of water reuse in wastewater treatment pond (lagoon) systems. Matthew obtained his B.S. in Civil Engineering from Lafayette College in 2006, and his M.S. in Environmental Engineering from the University of South Florida in 2012. Matthew is an E.I.T. and a LEED Green Associate with several years of work experience both in the United States and in Latin America.

Miss Christine Prouty, University of South Florida

Mr. Kevin Orner, University of South Florida

Kevin Orner is a PhD student at the University of South Florida.

Dr. James R. Mihelcic, University of South Florida

Dr. James R. Mihelcic is a Professor of Civil and Environmental Engineering and State of Florida 21st Century World Class Scholar at the University of South Florida. Dr. Mihelcic directs the Peace Corps Master’s International Program in Civil & Environmental Engineering (http://cee.eng.usf.edu/peacecorps) which allows students to combine their graduate studies with service and research in the Peace Corps as water/sanitation engineers (in developing world settings). He is also director of the U.S. Environmental Protection Agency (EPA) National Research Center for Reinventing Aging Infrastructure for Nutrient Management (RAINmgt). He is an international expert in provision of water, sanitation, and hygiene in developed and developing world communities. His teaching and research interests are centered around engineering and sustainability, specifically understanding how global stressors such as climate, land use, and urbanization influence water resources, water quality, water reuse, and selection and provision of water supply and sanitation technologies.

Dr. Mihelcic is a member of the Environmental Protection Agency’s Chartered Science Advisory Board. He is past president of the Association of Environmental Engineering and Science Professors (AEESP), a Board Certified Environmental Engineering Member, and current Board Trustee with the American Academy of Environmental Engineers & Scientists (AAEES). He is lead author for 4 textbooks: Fundamentals of Environmental Engineering (John Wiley & Sons, 1999) (translated into Spanish); Field Guide
Abstract

As society addresses the major challenges associated with food, water, energy and climate change there is an increasing need for engineers that are interdisciplinary and globally competent. The Master’s International Program (MIP) at the University of South Florida is a graduate partnership with the U.S. Peace Corps that provides over two years of supervised professional service and international research experiences that include specialized training in language, culture, participatory planning, and sustainable development. The students gain a global perspective while performing research in an international context of economic, social, and environmental limitations. Using a survey tool with quantitative and qualitative metrics, this study assessed the effectiveness of global competency training for engineering students in the MIP at the University of South Florida. Results show that students were able to correlate each stage of the MIP process to the development of core global competencies outlined by the National Research Council needed for global aptitude.

Keywords

Global Competency, Sustainable Development, Engineering Education, Master’s International Program, Peace Corps

Introduction

The foundations and fundamentals of engineering are universal; however, the successful application of all engineering disciplines highly depends on the cultural context in which it is occurring, calling for the development of global competency skills for engineering students. Global competency is defined here as the ability for an engineering student to understand and work effectively with engineers and other co-workers from countries other than the student’s own country, especially those who may solve and define problems differently than the student. This paradigm is becoming increasingly evident as society addresses the major challenges associated with food, water, energy and climate change through multi-disciplinary strategies involving engineers, anthropologists, public health professionals and other related sciences in geographic or cultural settings that are unique from their training.

The National Research Council established the following four core competencies as a framework to develop engineering curriculum at the undergraduate and graduate levels: 1) development of language and cultural skills, 2) teamwork and group dynamics, 3) knowledge of international business and engineering cultures, and 4) knowledge of variations in international engineering education and practice. Based upon this structure, several engineering programs have responded using various methods to address these global competencies. Georgia Technological University, for example, offers a Global Studies Certificate that focuses on international relations and the global economy through language training in addition to a capstone course and 26 weeks of study abroad. Other universities, such as Florida State University, Lehigh University,
University of Texas–Tyler, University of Rhode Island, Michigan Technological University and University of Pittsburgh also have developed curriculums that cultivate core global competency skills through intensive coursework, projects and/or thesis work, and international study-abroad experiences. The main issue with some of these programs, however, is the duration of the international experience and the amount of training that the student receives before embarking abroad. In 2012, 341,284 U.S. students participated in some form of international study abroad program (4% engineering discipline), however less than 1% of the total served or studied abroad for more than one academic year\(^3\). Comparative studies have demonstrated the importance of international experiences in developing global competency\(^4\), but it is this short duration that brings into question the efficacy in developing globally competent engineers upon graduation.

Conversely, the Master’s International Program (MIP) at the University of South Florida is a university partnership with the U.S. Peace Corps that provides an exceptional opportunity to develop global competency of graduate level engineers (website omitted for review). Prior to their international research and service, University of South Florida MIP students spend a year on campus and take courses in anthropology and public health in addition to traditional graduate engineering courses (physical and chemical principles, aquatic chemistry, green engineering for sustainability, etc.). Students enroll in or attend one-hour, graduate seminars such as ERIC (Environmental Research Interdisciplinary Colloquium (ERIC) in both semesters and EWRE (Environmental and Water Resources Engineering) in the spring that consist of on campus and guest lecturers on related topics each week. Outside the traditional engineering curriculum, they enroll in a specially designed course, Sustainable Development Engineering, which includes topics based on the research of previous MIP students and includes a construction laboratory component. Through their coursework, most MIP students are easily able to obtain the graduate Water, Health, and Sustainability Certificate offered at the University of South Florida. Then MIP students receive at least two years of supervised professional service and international research experiences that includes specialized training in language, culture, participatory planning, and sustainable development practices through the Peace Corps partnership. This usually includes at least 8 weeks of intense language, cultural, and technical training and 27 months of service in a designated community. The students also gain a global perspective while performing graduate level research in an international context of economic, social, and environmental limitations\(^5,6\). There are over one hundred\(^7\) MIPs currently operating at US universities; however, the specialization within engineering is currently limited to nine\(^7\) campuses and typically includes mechanical, civil, and environmental engineering disciplines.

Despite the rarity of the engineering MIP as a means to enhance global competency skills in its graduates, students who complete the program often find themselves working for public or private institutions that can be traced to their international service experiences and their research focus. Placement in positions that influence or implement science policy (e.g. Center for Disease Control and Prevention, Environmental Protection Agency, Mine Health and Safety Administration), directly implement global water, sanitation, and hygiene promotion (e.g. U.S. Agency for International Development, Oxfam, Action Against Hunger, CARE International, International Relief and Development, Cardno Emerging Markets, IRC International Water and Sanitation Centre), and academic teaching research (e.g. continuing graduate student, faculty member) are derived from globally competent skills that are developed during the MIP. The MIP is also a mechanism for peer-reviewed research to be conducted and scholarship to be
generated, which further differentiates it from other undergraduate and graduate study abroad programs.

As the MIP at the University of South Florida approaches its seventh year, the objective of this study is to assess the effectiveness of the MIP for training globally competent engineers, using a survey tool with quantitative and qualitative metrics to gather information from program alumni and students recently returned from their service. The qualitative metrics are framed within the core competencies outlined by the National Research Council, where students evaluate their entire experience based upon their perception of developing skills related to the core competencies. In addition, MIP graduates are assessed upon their current professional placements to better understand how they are utilizing the skills developed in the MIP to influence the global context. The quantitative portion of this assessment investigates the contribution of knowledge that was generated by the participants by evaluating the distribution of peer-reviewed publications. This study increases the awareness for students to participate in long-term international experiences to develop true competency and the efficacy of the MIP curriculum pedagogy provides a foundation to establish its graduates as contributing members to the global engineering community through publication and employment.

Methods

An online survey with seventeen question was developed for the MIP alumni, students currently abroad, and students recently returned from Peace Corps that have not completed their Master’s thesis requirement. This survey included two parts: 1) basic background information; and 2) a Likert-scale questionnaire to rank on how the MIP elements fulfilled each of the four NRC global competencies. Basic background questions included: where the student served or serves, what type of volunteer they were/are, their undergraduate education, which courses they took and extracurricular organizations they participated in at the University of South Florida prior to service, if and where they published their research in an academic journal, and their current employment.

The second part of the survey had the alumni or student rank how each of the MIP elements satisfied the four global competencies on a scale of one to five (one being not at all, two being a little bit, three being somewhat, four being well, and five being very well). This part of the online survey was divided into three pages: pre-Peace Corps service (on campus), Peace Corps Service, and post Peace Corps service. This reflected the three stages of the MIP. The pre Peace Corps service had the alumni and students rank their anthropology, public health, seminar, engineering, and Sustainable Development Engineering courses as well as their extracurricular involvement and informal and formal language studies (if applicable). The Peace Corps service phase consisted of Peace Corps training and Peace Corps service. Finally, the post Peace Corps stage (if applicable) included the thesis process, academic journal publication, and their current/past employment since program completion.

Survey data was analyzed first by evaluating at basic descriptive statistics, then by using non-parametric statistics. The Friedman test, a non-parametric version of the one-way analysis of variance (ANOVA)\(^8\), was used to test if the difference between the relative rankings of the different MIP elements was significant. Next, the paired-samples sign test was used to determine which of the 28 pairs of the differences in the matched program elements for each of the four
global competencies were significant (if they had significantly higher positive or negative frequencies of median differences). The paired-samples sign test is used in place of the paired samples t-test or Wilcoxon signed-rank test when the distribution of the median differences between elements is not normally distributed. IBM SPSS version 21 software was used for all statistical analysis.

Results and Discussion

Since the inception of the MIP at the University of South Florida in 2008 (and through Fall 2014) 48 students have enrolled, with 42 of them having started or completed service in the Peace Corps by the stat of 2015. Of these 42 students, 24 responded to the survey; but this does not include four of the study authors that have completed the program since they participated in the design of the survey. However, their basic demographic information (country served, major, etc.) was included in the results. Though most (88.5%) MIP students have an undergraduate degree in engineering, students from other majors (e.g., environmental science, ecology and evolutionary biology, geology, physics.) have also been able to participate in the program by taking supplementary engineering courses (see Figure 1).

![Figure 1](image.png)

Figure 1: University of South Florida Master’s International Program undergraduate degree background (n = 24)

Figure 2 presents two descriptions of the graduate students who participated in the MIP at the University of South Florida. The bar chart summarizes which areas of service that the MIP students went into during their study abroad collaboration with the US Peace Corps with water and sanitation being the dominant placement for students (over 50%). This was followed by similar placement levels in both health and education (20% and 15% respectively). This primary placement trend mirrors the skill sets of the MIP students as they develop core engineering fundamental competencies during their undergraduate and graduate coursework before their international service and research experience. In some cases, placements in health, education or agriculture actually lead to work in the WASH sector, still allowing students to build their thesis
research around an engineering topic. Other, less prevalent, placements occurred in areas of natural resource management, agriculture and technology transfer. Many responses indicated that most MIP students had secondary assignments that incorporated the other areas into their work. For example, one MIP in Mexico was assigned to natural resource management but spent a significant amount of time working in water and sanitation. Additionally, water and sanitation placements were often closely connected to health activities as well. The information in Figure 2 clearly depicts the diverse experience that MIP students at the University of South Florida undertake during their 27 month Peace Corps service (including three months of immersion training) and field research.

![Figure 2: The primary assignments (n=26) and locations (n=42) of past University of South Florida Masters International Program students.](image)

The survey had former and current MIP students rank each portion of the MIP (on campus courses, Peace Corps training and service, and the thesis process) on a scale from one to five (one being not at all and five being very well) in terms of how well these elements satisfied the four global competencies. Median values of the self-reported rankings of the four global competency for each element are shown in Figure 3.
It is evident from Figure 3 that there are distinct differences between how students perceived that each element of the MIP satisfied the global competencies. Overall, the Sustainable Development Engineering course was ranked high for all four global competencies while other engineering courses are strong only in the second global competency (teamwork and group dynamic skills). The anthropology course was ranked high in satisfying the global competency of language and cultural skills, but was ranked low in the other three global competencies. Peace Corps training ranked relatively high in all the global competencies, though Peace Corps service ranked the highest in all four compared to all the elements of the MIP except for teamwork and group dynamics which it tied with engineering courses and the Sustainable Development Engineering courses. Moreover, the thesis process ranked relatively low (2-3) in all the global competencies though this is understandable given that most often the thesis is completed on campus in the United States.

Nevertheless, these differences need to be analyzed statistically to confirm that they are significant. First, the Friedman test was applied for each global competency to see if the differences between each of the MIP element rankings were significant. For each global competency there was a significant difference in the relative rankings between the MIP elements ($\chi^2(7) = 55.6$, $p < 0.01$, $\chi^2(7) = 39.2$, $p < 0.01$, $\chi^2(7) = 48.6$, $p < 0.01$, $\chi^2(7) = 43.15$, $p < 0.01$ for each of the four global competencies in increasing order). Even when the pre-campus courses and Peace Corps experience (training and service) were compared separately, there were significant differences between the elements in each of these phases ($p < 0.01$).

However, the Friedman test does not demonstrate how these elements are different. Thus, the paired-samples sign test was used to compare the median difference between each combination
of matched pairs of how survey respondents ranked the MIP elements in each of the four global competencies. This statistical test determines if there is a significantly higher frequency of positive or negative differences between the matched pairs. The results for each of the 28 pairs of comparisons between the MIP elements for each of the four global competencies are show in Tables 1-4. From Table 1, students ranked the anthropology course significantly higher more times in the global competency of language and cultural skills than public health, seminars, engineering courses and thesis. Only Peace Corps service was ranked significantly higher at greater frequencies than anthropology for this first competency. Additionally the public health course was ranked significantly higher at greater frequencies in language and cultural skills than engineering courses.

In general, the other MIP elements were ranked significantly higher more times for the first global competency than engineering courses (Table 1). Notably, the Peace Corps service ranked significantly higher more times in this competency than all the other MIP elements, even Peace Corps training. However, Peace Corps training is only 8-12 weeks while service is 27 months. Peace Corps training ranked significantly higher at greater frequencies in language and cultural skills over most elements, but this difference was not significant compared to the anthropology and Sustainable Development Engineering courses. Thus, the pre-Peace Corps preparatory courses offered through anthropology and the Sustainable Development Engineering course significantly fulfill the self-reported global competency of language and cultural skills, which are then reinforced during the Peace Corps. These results help reinforce the usefulness and importance of pre-service MIP courses in preparing program participants for their Peace Corps service and future careers that may otherwise be lacking in the standard engineering curriculum.

Table 1: Significance results (p-values) of paired samples-sign test for the first global competency of language and cultural skills between the different elements of the University of South Florida Master’s International Program (n = 15-22).

<table>
<thead>
<tr>
<th></th>
<th>Public Health Course</th>
<th>Sustainable Development Engineering Course</th>
<th>Graduate Environmental Seminars</th>
<th>Other Engineering Courses</th>
<th>Peace Corps Training</th>
<th>Peace Corps Service</th>
<th>Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology Course</td>
<td><0.01*</td>
<td>0.08</td>
<td>p<0.01*</td>
<td><0.01*</td>
<td>0.45</td>
<td><0.01*</td>
<td><0.01*</td>
</tr>
<tr>
<td>Public Health Course</td>
<td></td>
<td></td>
<td>0.18</td>
<td>0.04*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable Development Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Environmental Seminars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Engineering Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace Corps Training</td>
<td><0.01*</td>
<td><0.01*</td>
<td><0.01*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace Corps Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.01*</td>
<td>0.01*</td>
<td><0.01*</td>
</tr>
</tbody>
</table>

* Indicates significantly greater frequencies of positive differences between the left row rankings to the top column rankings.
Indicates significantly greater frequencies of negative differences between the left row rankings to the top column rankings.

As for the second global competency of teamwork and dynamic skills, engineering courses have a high ranking median value (4), as shown in Figure 3. However, there is no statistically significant higher frequency of differences on how students ranked other MIP elements in comparison. Students ranked the Sustainable Development Engineering course and the Peace Corps training and service had statistically significant greater frequencies of higher rankings compared to other MIP elements (including engineering courses). Therefore, these results show that the Sustainable Development Engineering course and the Peace Corps service perform well at satisfying the second global competency of teamwork and group dynamic skills.

Table 2: Significance results (p-values) of the paired-samples sign test for the second global competency of teamwork and group dynamic skills between the different elements of the University of South Florida Master’s International Program (n = 16-23).

<table>
<thead>
<tr>
<th>Public Health Course</th>
<th>Sustainable Development Engineering Course</th>
<th>Graduate Environmental Seminars</th>
<th>Other Engineering Courses</th>
<th>Peace Corps Training</th>
<th>Peace Corps Service</th>
<th>Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology Course</td>
<td>1.00</td>
<td><0.01<sup>+</sup></td>
<td>0.14</td>
<td>0.14</td>
<td><0.01<sup>−</sup></td>
<td>0.51</td>
</tr>
<tr>
<td>Public Health Course</td>
<td><0.01<sup>−</sup></td>
<td>0.04<sup>+</sup></td>
<td>0.15</td>
<td>0.21</td>
<td><0.01<sup>−</sup></td>
<td>0.39</td>
</tr>
<tr>
<td>Sustainable Development Engineering</td>
<td><0.01<sup>−</sup></td>
<td><0.01<sup>−</sup></td>
<td>0.24</td>
<td>0.45</td>
<td><0.01<sup>+</sup></td>
<td></td>
</tr>
<tr>
<td>Graduate Environmental Seminars</td>
<td>1.00</td>
<td><0.01<sup>−</sup></td>
<td><0.01<sup>−</sup></td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Engineering Courses</td>
<td>0.01</td>
<td><0.01<sup>−</sup></td>
<td>0.01</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace Corps Training</td>
<td><0.01<sup>−</sup></td>
<td>0.15</td>
<td><0.01<sup>−</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace Corps Service</td>
<td><0.01<sup>−</sup></td>
<td><0.01<sup>−</sup></td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁺ Indicates significantly greater frequencies of positive differences between the left row rankings to the top column rankings.

[−] Indicates significantly greater frequencies of negative differences between the left row rankings to the top column rankings.

Next, the third global competency concerns the knowledge of the business and engineering cultures of counterpart countries. The statistical analysis results in Table 3 show that the interdisciplinary courses in anthropology and public health are ranked lower significantly more times than the Sustainable Development Engineering course, seminars, and Peace Corps service. Overall, the Sustainable Development Engineering course and Peace Corps service elements have greater frequencies of higher rankings than the other MIP elements. Furthermore, seminars are actually ranked higher at significantly greater frequencies than engineering courses in addition to the interdisciplinary courses. Thus, as with the previous two global competencies, the Sustainable Development Engineering course and the Peace Corps service are ranked high in
satisfying the third global competency of knowledge of the business and engineering cultures though seminars are also significant in this area.

Table 3: Significance results (p-values) of the paired-samples sign test for the third global competency of knowledge of the business and engineering cultures of counterpart countries between the different elements of the University of South Florida Master’s International Program (n = 16-23).

<table>
<thead>
<tr>
<th></th>
<th>Public Health Course</th>
<th>Sustainable Development Engineering Course</th>
<th>Graduate Environmental Seminars</th>
<th>Other Engineering Courses</th>
<th>Peace Corps Training</th>
<th>Peace Corps Service</th>
<th>Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology Course</td>
<td>0.38</td>
<td><0.01<sup>+</sup></td>
<td>0.01<sup>-</sup></td>
<td>0.12</td>
<td>0.03<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td>0.15</td>
</tr>
<tr>
<td>Public Health Course</td>
<td><0.01<sup>-</sup></td>
<td>0.02<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td>0.30</td>
<td>0.10</td>
<td><0.01<sup>-</sup></td>
<td>0.15</td>
</tr>
<tr>
<td>Sustainable Development</td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td>0.00<sup>+</sup></td>
<td>0.05<sup>-</sup></td>
<td>0.61</td>
<td><0.01<sup>+</sup></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td><0.01<sup>-</sup></td>
<td>0.00<sup>+</sup></td>
<td>0.30</td>
<td><0.01<sup>-</sup></td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Graduate Environmental</td>
<td></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td>0.77</td>
<td><0.01<sup>-</sup></td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Seminars</td>
<td></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td>0.12</td>
<td><0.01<sup>-</sup></td>
<td></td>
</tr>
<tr>
<td>Other Engineering</td>
<td></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td></td>
</tr>
<tr>
<td>Peace Corps Training</td>
<td></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td></td>
</tr>
<tr>
<td>Peace Corps Service</td>
<td></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td><0.01<sup>-</sup></td>
<td></td>
</tr>
</tbody>
</table>

* Indicates significantly greater frequencies of positive differences between the left row rankings to the top column rankings

Indicates significantly greater frequencies of negative differences between the left row rankings to the top column rankings

Lastly, the statistical analysis results of the fourth global competency of the knowledge of international variations in engineering education and practice shown in Table 4 are similar to those of the third global competency in knowledge of the business and engineering cultures of counterpart countries. The interdisciplinary courses of anthropology and public health have higher frequencies of lower rankings compared to the other MIP elements, which would be expected since global competencies three and four concern engineering education and business and these courses are outside of engineering. Again, the Sustainable Development Engineering course and the Peace Corps service have the significantly highest occurrence of higher median rankings to other MIP elements except when compared to each other. Though both the third and fourth global competencies concern engineering education, engineering courses were not ranked higher at significantly greater frequencies than even the interdisciplinary courses. In fact, the Sustainable Development Engineering course and Peace Corps service were ranked higher at significantly greater frequencies than the engineering courses.
Table 4: Significance results (p-values) of the paired-samples sign test for the fourth global competency of knowledge of international variations in engineering education and practice between the different elements of the University of South Florida Master’s International Program
(n = 16-23).

<table>
<thead>
<tr>
<th></th>
<th>Public Health Course</th>
<th>Sustainable Development Engineering Course</th>
<th>Graduate Environmental Seminars</th>
<th>Other Engineering Courses</th>
<th>Peace Corps Training</th>
<th>Peace Corps Service</th>
<th>Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology Course</td>
<td>0.02*</td>
<td><0.01*</td>
<td>0.01*</td>
<td>0.55</td>
<td>0.02*</td>
<td><0.01*</td>
<td>0.01*</td>
</tr>
<tr>
<td>Public Health Course</td>
<td><0.01*</td>
<td></td>
<td>0.33</td>
<td>1.00</td>
<td>0.21</td>
<td><0.01*</td>
<td><0.01*</td>
</tr>
<tr>
<td>Sustainable Development Engineering</td>
<td><0.01*</td>
<td></td>
<td><0.01*</td>
<td><0.01*</td>
<td>0.01*</td>
<td>0.55</td>
<td><0.01*</td>
</tr>
<tr>
<td>Graduate Environmental Seminars</td>
<td>0.34</td>
<td></td>
<td>0.61</td>
<td><0.01*</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Engineering Courses</td>
<td>0.79</td>
<td></td>
<td><0.01*</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace Corps Training</td>
<td><0.01*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peace Corps Service</td>
<td><0.01*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Indicates significantly greater frequencies of positive differences between the left row rankings to the top column rankings
+ Indicates significantly greater frequencies of negative differences between the left row rankings to the top column rankings

While these results do indicate the importance of the Sustainable Development engineering course, they do not imply that the University of South Florida engineering courses are not important to the MIP curriculum. The Peace Corps service component of the MIP is the longest (over two years) which may have created a perception bias, potentially resulting in higher relative rankings. Nevertheless, perhaps the core engineering courses could be adapted to better incorporate the global competencies, like the Sustainable Development Engineering course has done. This analysis does show that the thesis process ranks relatively low on the global competencies and this element could be improved by: adding a community dissemination component (whether it is a report, video, education intervention, etc.) and/or have the students develop a lesson plan or module for the Sustainable Development Engineering course based on their research. Some students who have transitioned to the PhD program have already done this. In general, the results of this analysis do not simply determine which MIP elements are best at satisfying the global competencies (which are the Sustainable Development Engineering course and Peace Corps service), but these results demonstrate how each of the MIP elements complement each other to fulfill all four global competencies. For example, the anthropology course is strong in the first global competency of culture and language skills but weak in the third and fourth global competencies that concern engineering specifically. However, the Sustainable Development Engineering course and even the seminars are strong in the third and fourth competencies which leads to an overall program and preparation that satisfies all four of the global competencies. Further qualitative data (e.g. interviews) could be collected from
students returning from Peace Corps service to gain a deeper understanding of how students ranked the different MIP elements.

MIP elements such as informal and formal language training, extracurricular involvement, and post-Peace Corps employment were not included in Figure 3 or the statistical analysis with their comparatively smaller sample sizes (4-16) though they are important components in the MIP and do reflect the core competencies outlined earlier. Of the 19 alumni and students that responded to the survey question about which extra-curricular activity they participate on campus, 52.6% (10) said they were involved in Engineers without Borders, 31.6% (6) said they were members of professional engineering societies such as American Water Works Association and 63.2% (12) were involved in other activities as well such as sports teams, service and religious organizations. MIP survey respondents ranked their extracurricular involvement high at fulfilling the global competency of teamwork and group dynamic skills (median score of 4) while the first, third, and fourth global competencies received rankings of 2, 1, and 1.5 respectively. This demonstrates the importance of extracurricular involvement even in engineering education. Though only one person surveyed reported taking formal language training (such as a course), seven out of 25 respondents (28%) indicated that they participated in informal language training, specifically Rosetta Stone (six out of the seven). Furthermore, three students indicated that they were already fluent in Spanish prior to enrollment in the MIP.

Notably, the analysis shows that engineering courses and the thesis process alone with their lower median rankings, as is done for a traditional Master’s education, may not completely satisfy the four global competencies that are crucial skills for engineers today. Of the 16 survey respondents who ranked their current employment for the global competencies, the median scores were 2.5, 5, 3.5, and 3 for each of the global competences in increasing order. These higher rankings indicate that global competencies are essential in engineering careers and courses like the Sustainable Development Engineering course and longer term, international service and research such as through the Peace Corps that are rated higher in the global competencies are needed to prepare today’s engineers for their future career paths.

Often, engineering graduates have significant opportunities to select from to continue their professional development as options in industry, academics, governmental and non-governmental organizations desire skill sets that graduates of the MIP possess. It can be argued that a career path or employment position best displays the global aptitude of a graduate because some positions require the core competencies outlined by the National Research Council as prerequisites for the job. For example, students that continue on an academic path must have shown the ability to apply the fundamentals of engineering to solve problems that are unique to their own context, and they communicate the results to very diverse stakeholders in a meaningful way. Or, students pursuing governmental or non-governmental organization work must be multidisciplinary and possess integration skills, obtained during their Peace Corps service, that allow them to function in different cultures.

Figure 4 presents data related to the post-MIP activities of the graduates in terms of chosen career path. Here, most of the MIP graduates have taken professional placements in engineering (42%), often working for industry or consulting firms; however, a large percentage (21%) of the graduates have continued to pursue advanced graduate degrees. Other current career paths included choices such as government agency jobs, non-governmental development groups, or
undecided. It should be noted that some students have touched many different career paths resulting from their involvement with the MIP at the University of South Florida, however, this survey did not inquire about the complete employment history of the participants. An example of this would be a student who works outside of academia after graduating from the MIP, but then returns to graduate school for a doctoral degree. The option to pursue an advanced degree is an important career path in terms of measuring global competency because these people must have shown some level of global aptitude to be successful and reach this milestone, while at the same time they are often working with younger students and mentoring junior engineers to become more globally skilled. This mentoring relationship is fostered at the University of South Florida by graduates of the MIP who provide support and advice to current MIP students before and during their international experience.

![Figure 4 – Where the University of South Florida Master’s International Program students are employed as of November 2014 (n=26).](image)

Finally, peer-reviewed research is another metric to assess the global impact, or global competency, of the students in the program since the peer-review process challenges the researcher to conduct a study that is important, meaningful and well designed. Since the University of South Florida MIP students are working in a unique context, culturally and geographically, then publications from these students must satisfy the challenges presented by the review process, and in turn demonstrate aptitude on the global level. Table 5 summarizes some of the journals and books that have been published based on research of the MIP since 2008. Many of the target journals involve water, health, and development which is reflective of the primary placements described in Figure 2. The MIP at the University of South Florida has provided opportunities for students to conduct and publish research in areas of global need, including research that: assesses resource recovery from sanitation systems9,10, determines embodied material and human energy in provision of water11, examines for lead contamination of self-supply groundwater systems12, assesses the usage of appropriate hand-washing technologies13, uses solar distillation for water provision14, assesses sustainability of infrastructure that includes life cycle thinking and principles of sustainable development15,16, measures the feasibility of domestic rainwater harvesting17, investigates the potential of the EMAS pump for water supply18, and applies material balances to solid waste management in small island developing states19.
Table 5 – Peer reviewed publication destinations as of 2014 from the University of South Florida Masters International Program graduates.\(^8\)–19

<table>
<thead>
<tr>
<th>Journal of Sustainable Development</th>
<th>Environmental Science & Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal of Water and Health</td>
<td>Journal of Water, Sanitation and Hygiene for Development</td>
</tr>
<tr>
<td>Chemosphere</td>
<td>Journal of Cleaner Production</td>
</tr>
<tr>
<td>Journal of Environmental Engineering</td>
<td>Environmental Engineering Science</td>
</tr>
<tr>
<td>American Water Works Association</td>
<td>World Development</td>
</tr>
</tbody>
</table>

Conclusions

Defining, developing and assessing global competence for engineers is an emerging field of inquiry. This paper presents the MIP at the University of South Florida as an example of a curriculum that achieves these goals using intensive multi-disciplinary graduate level coursework and long-term study abroad research experiences by means of collaboration with the US Peace Corps. Program outcomes that focus on interpersonal evaluation, career path choices and peer-reviewed publications are used to demonstrate the efficacy of the MIP as a means to improve the global aptitude of engineers graduating from the program, and also differentiate it from other study abroad experiences where students are rarely evaluated beyond their own experiential viewpoints.

Statistical analysis confirmed that MIP elements such as the Sustainable Development Engineering course and Peace Corps Service were ranked significantly higher than traditional engineering curriculum (engineering courses and master’s thesis) at satisfying the global competencies. Overall, the study results demonstrated how each of the MIP elements, such as the interdisciplinary courses in anthropology and public health, engineering courses, seminars, and international research and service, complement each other to fulfill all four global competencies that MIP alumni utilize in their careers. Globally competent engineers are needed now more than ever to help solve the major challenges in food, water, energy and climate and the University of South Florida MIP is one program helping to train these types of engineers. Since MIPs are limited by the number of students that the Peace Corps can support, it is realistic to use this example as a template for other engineering curriculums to follow with help of other funding sources.

Future work regarding this topic is planned in three stages. The first stage will be to enhance the datasets for pre-service, during service, and post-service activities with more quantitative data so that we can better compare the responses of the group to understand where and how global competency skills are improved. The second stage will be to incorporate other assessment instruments, such as the Socially Responsible Leadership Scale Assessment, to begin to understand how global competency improves over time during enrollment and also attribute the change to the MIP at the University of South Florida. The final stage will involve a closer examination into whether extended global experiences that are promoted with the program interfere with the learning of other ABET competencies.
References

Acknowledgements
This material is based upon work supported by the National Science Foundation, under grant numbers 1243510 and 1144244.

Nathan Manser

Nathan Manser is a doctoral candidate in Environmental Engineering at the University of South Florida, Tampa. Currently he teaches engineering design graphics and biological waste-to-energy courses. He conducts research in the areas of design and optimization of anaerobic digestion systems, focusing on protecting human and environmental health. He is a former United States Peace Corps volunteer and recipient of National Science Foundation scholarships.

Colleen Naughton

Colleen C. Naughton is a doctoral student at the University of South Florida in the Department of Civil and Environmental Engineering. Ms. Naughton was part of the Peace Corps Master’s International Program where she served and conducted research in Mali, West Africa for three years as a Water and Sanitation Engineer. Her master's thesis was on “Assessing Appropriate Technology Handwashing Stations in Mali, West Africa”. Ms. Naughton's dissertation research involves a human and embodied material energy analysis of the shea butter process, creating a land suitability model for the shea tree distribution using Geographic Information Systems (GIS) to estimate the production potential and population that work with and consume shea butter, and an ethnographic analysis of the importance of shea butter to women and their families.

Kevin Orner

Kevin Orner is a Ph.D. student in Environmental Engineering at the University of South Florida, where he studies nutrient recovery from centralized wastewater treatment. Currently he is a Teaching Assistant and course instructor for the Sustainable Development Engineering course. After obtaining a B.S. in Civil and Environmental Engineering with a certificate in Technical Communication from the University of Wisconsin-Madison, Kevin served for two years as a Peace Corps Volunteer in Panama. In December 2011, he completed his M.S. in Civil and Environmental Engineering at the University of South Florida. Kevin is an E.I.T. with several years of engineering consulting experience.

Christine Prouty

Christine Prouty is a Ph.D. student in Environmental Engineering at the University of South Florida, where her research focuses on a system dynamics perspective for modeling the interactions between factors that influence the adoption and success of wastewater-based resource recovery systems. After obtaining a B.S. in Environmental Engineering from Louisiana State University, Christine served as a Peace Corps Volunteer in Uganda from 2010-2012 where
she collaborated on community health, water and sanitation, youth development, and income generation projects. In August 2013, she completed his M.S. in Environmental Engineering at the University of South Florida.

Matt Verbyla

Matthew Verbyla is a doctoral candidate and NSF Graduate Research Fellow at the University of South Florida, where he studies pathogen removal and microbial risk for water reuse in wastewater treatment pond (lagoon) systems. After obtaining a B.S. in Civil Engineering from Lafayette College, Matthew spent several years in Honduras, first with a Fulbright Fellowship to study the sustainability of rural water service, and later working in the WASH sector as engineering project director for the NGO Global Community Development. In December 2012, he completed his M.S. in Environmental Engineering at the University of South Florida. Matthew is an E.I.T. and a LEED Green Associate with several years of engineering consulting experience in site/civil engineering in the United States.

James Mihelcic