2017 ASEE Annual Conference & Exposition

Development of an Early Alert System to Predict Students At Risk of Failing Based on Their Early Course Activities

Presented at Predicting Student Success

The emphasis on increasing student retention and graduation rates at institutions of higher education is driving the need for creation and implementation of early alert system. Such an early alert system could be used in identifying students in academic trouble before it results into failure. Early identification of students who are at a risk of dropping or failing a course will help instructors to adapt their course delivering techniques with student’s learning styles and improve overall performance of a class. This paper discusses an early alert system to predict students who are at risk of failure based on their activity at the beginning of semester.
The proposed alert system considers various indicators, including the homework assignments and the mid-term exam corresponding to the first quarter, along with in-class participation as input values. Data collected in large sections of Mechanics of Materials course over four semesters were used for development and validation of the early alert system. The data analysis showed that the proposed model is capable of predicting the final scores of the students with an acceptable accuracy (R2=0.69). Feasibility of using the model was also validated using over 100 additional data points, which were randomly selected from the initial dataset. Good correlation was observed between the data and model predictions, with over 94% of the data points falling within the limits of a 90% confidence interval. The proposed model has possible implications in the similar engineering courses provided that the required data is collected during early semester activities. This tool enables the instructor to detect and reach out to the at-risk student and provide proactive assistance to students so that they are able to succeed in the course. Proactive assistance may include referrals to appropriate resources, providing tailored activities to improve the weakness of students and one-to-one academic skill building workshops.

Authors
  1. Mr. Seyedhamed Sadati Missouri University of Science & Technology [biography]
  2. Dr. Nicolas Ali Libre Missouri University of Science & Technology [biography]
Note

The full paper will be available to logged in and registered conference attendees once the conference starts on June 24, 2017, and to all visitors after the conference ends on June 28, 2018

Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.

« View session

For those interested in:

  • Academia-Industry Connections
  • Broadening Participation in Engineering and Engineering Technology
  • K-12