David H. Jonassen
Distinguished Professor at the School of Information Science & Learning Technologies
College of Education
University of Missouri

Biography

David H. Jonassen is a Distinguished Professor at the School of Information Science and Learning Technologies in the College of Education at the University of Missouri. He has edited, authored, or coauthored more than twenty-five books, as well as hundreds of articles in journals, industry publications, and edited collections. Separate studies have shown that Jonassen is the most widely published and cited author in the instructional design field.

As a professor in the area of educational psychology, Dr. Jonassen’s past research has focused on designing constructivist learning environments, cognitive tools for learning (Mindtools), cognitive modeling/task analysis, and systems dynamics/modeling. Most recently, his attention has moved toward issues of problem-solving. To this end, he has begun working in the context of engineering education for obvious reasons—because engineering students are specifically trained (and will be eventually hired) to solve problems. The types of problems engineers encounter on the job, like those people encounter in everyday life, are relatively “ill-structured” ones—that is, they don’t necessarily have a correct solution, a well-defined method for finding a solution, or even well-established criteria for what determines a successful solution.

In his study of engineers in the workplace—where one would expect to find professionals engaged in solving design problems—Dr. Jonassen found that most of the problems encountered by engineers are rendered ill-structured by factors that have little to do with engineering per se, but rather with regulatory, social, or monetary constraints, all of which make the problems (and their solutions) much more complex. Instead of just telling students about a particular field, Dr. Jonassen believes educational systems need to begin to prepare students how to actually do the work in those fields. While his initial model has direct impact on the field of engineering, it has obvious implications for education in other fields as well. If implemented, his work could, in fact, transform the face of education itself.